Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Vaccine ; 39(50): 7321-7331, 2021 12 08.
Article in English | MEDLINE | ID: covidwho-1550111

ABSTRACT

Bacillus Calmette-Guérin (BCG) vaccine is an attenuated live strain of Mycobacterium bovis. It may be the most widely used vaccine in human history and is the only licensed human tuberculosis (TB) vaccine available. Despite its excellent safety history, a century of use in global vaccination programs, and its significant contribution to reducing TB mortality among children, the efficacy of BCG continues to be disputed due to its incomplete protection against pulmonary TB in adults. Still vaccines offer the best chance to contain the ongoing spread of multi-drug resistance TB and disease dissemination. The development of improved vaccines against TB therefore remains a high global priority. Interestingly, recent studies indicate that genetically modified BCG, or administration of existing BCG through alternate routes, or revaccination, offers improved protection, suggesting that BCG is well poised to make a comeback. Intravesical BCG is also the only approved microbial immunotherapy for any form of cancer, and is the first-line therapy for treatment-naïve non-muscle invasive bladder cancer (NMBIC), which represents a majority of the new bladder cancer cases diagnosed. However, almost a third of patients with NMIBC are either BCG unresponsive or have tumor recurrence, leading to a higher risk of disease progression. With very few advances in intravesical therapy over the past two decades for early-stage disease, and a limited pipeline of therapeutics in Phase 3 or late Phase 2 development, there is a major unmet need for improved intravesical therapies for NMIBC. Indeed, genetically modified candidate BCG vaccines engineered to express molecules that confer stronger protection against pulmonary TB or induce potent anti-tumor immunity in NMIBC have shown promise in both pre-clinical and clinical settings. This review discusses the development of second generation, genetically modified BCG candidates as TB vaccines and as anti-tumor adjuvant therapy for NMIBC.


Subject(s)
Tuberculosis Vaccines , Tuberculosis , Urinary Bladder Neoplasms , BCG Vaccine , Humans , Neoplasm Recurrence, Local , Tuberculosis/prevention & control , Urinary Bladder Neoplasms/therapy
2.
J Clin Invest ; 131(11)2021 06 01.
Article in English | MEDLINE | ID: covidwho-1448082

ABSTRACT

First administered to a human subject as a tuberculosis (TB) vaccine on July 18, 1921, Bacillus Calmette-Guérin (BCG) has a long history of use for the prevention of TB and later the immunotherapy of bladder cancer. For TB prevention, BCG is given to infants born globally across over 180 countries and has been in use since the late 1920s. With about 352 million BCG doses procured annually and tens of billions of doses having been administered over the past century, it is estimated to be the most widely used vaccine in human history. While its roles for TB prevention and bladder cancer immunotherapy are widely appreciated, over the past century, BCG has been also studied for nontraditional purposes, which include (a) prevention of viral infections and nontuberculous mycobacterial infections, (b) cancer immunotherapy aside from bladder cancer, and (c) immunologic diseases, including multiple sclerosis, type 1 diabetes, and atopic diseases. The basis for these heterologous effects lies in the ability of BCG to alter immunologic set points via heterologous T cell immunity, as well as epigenetic and metabolomic changes in innate immune cells, a process called "trained immunity." In this Review, we provide an overview of what is known regarding the trained immunity mechanism of heterologous protection, and we describe the current knowledge base for these nontraditional uses of BCG.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Immunity, Cellular , Multiple Sclerosis/therapy , Mycobacterium bovis/immunology , T-Lymphocytes/immunology , Urinary Bladder Neoplasms/therapy , Virus Diseases/therapy , Animals , Diabetes Mellitus, Type 1/history , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , History, 20th Century , History, 21st Century , Humans , Multiple Sclerosis/history , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Mycobacterium Infections, Nontuberculous/history , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/pathology , Mycobacterium Infections, Nontuberculous/prevention & control , Tuberculosis/history , Tuberculosis/immunology , Tuberculosis/prevention & control , Urinary Bladder Neoplasms/history , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/pathology , Virus Diseases/history , Virus Diseases/immunology , Virus Diseases/pathology
3.
Mol Imaging Biol ; 24(1): 135-143, 2022 02.
Article in English | MEDLINE | ID: covidwho-1372811

ABSTRACT

PURPOSE: Molecular imaging has provided unparalleled opportunities to monitor disease processes, although tools for evaluating infection remain limited. Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by lung injury that we sought to model. Activated macrophages/phagocytes have an important role in lung injury, which is responsible for subsequent respiratory failure and death. We performed pulmonary PET/CT with 124I-iodo-DPA-713, a low-molecular-weight pyrazolopyrimidine ligand selectively trapped by activated macrophages cells, to evaluate the local immune response in a hamster model of SARS-CoV-2 infection. PROCEDURES: Pulmonary 124I-iodo-DPA-713 PET/CT was performed in SARS-CoV-2-infected golden Syrian hamsters. CT images were quantified using a custom-built lung segmentation tool. Studies with DPA-713-IRDye680LT and a fluorescent analog of DPA-713 as well as histopathology and flow cytometry were performed on post-mortem tissues. RESULTS: Infected hamsters were imaged at the peak of inflammatory lung disease (7 days post-infection). Quantitative CT analysis was successful for all scans and demonstrated worse pulmonary disease in male versus female animals (P < 0.01). Increased 124I-iodo-DPA-713 PET activity co-localized with the pneumonic lesions. Additionally, higher pulmonary 124I-iodo-DPA-713 PET activity was noted in male versus female hamsters (P = 0.02). DPA-713-IRDye680LT also localized to the pneumonic lesions. Flow cytometry demonstrated a higher percentage of myeloid and CD11b + cells (macrophages, phagocytes) in male versus female lung tissues (P = 0.02). CONCLUSION: 124I-Iodo-DPA-713 accumulates within pneumonic lesions in a hamster model of SARS-CoV-2 infection. As a novel molecular imaging tool, 124I-Iodo-DPA-713 PET could serve as a noninvasive, clinically translatable approach to monitor SARS-CoV-2-associated pulmonary inflammation and expedite the development of novel therapeutics for COVID-19.


Subject(s)
Acetamides/chemistry , COVID-19/diagnostic imaging , COVID-19/veterinary , Iodine Radioisotopes/chemistry , Positron-Emission Tomography , Pyrazoles/chemistry , Pyrimidines/chemistry , SARS-CoV-2/physiology , Animals , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Lung/diagnostic imaging , Lung/pathology , Lung/virology , Positron Emission Tomography Computed Tomography , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL